Vector Algebra

Multiple Choice Question

Q: \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are three non-zero vectors that are neither parallel nor perpendicular to each other.

For which of the following will the product DEFINITELY be a vector?

(i)
$$(\overrightarrow{u} \cdot \overrightarrow{v}) \times \overrightarrow{w}$$

(ii)
$$(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$$

(ii)
$$(\overrightarrow{u} \times \overrightarrow{V}) \cdot \overrightarrow{W}$$

(iii) $(\overrightarrow{u} \times \overrightarrow{V}) \times \overrightarrow{W}$

Free Response Questions

Q: 2 \overrightarrow{p} and \overrightarrow{q} are two collinear vectors.

[1]

State whether the statement below is true or false. Give a valid reason for your answer.

 $(\lambda \overrightarrow{p} + \beta \overrightarrow{q}) \times \overrightarrow{q} = 0$, where λ and β are scalars.

There are two vectors \overrightarrow{u} and \overrightarrow{v} such that $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

[1]

Find the projection of the vector \overrightarrow{u} on the vector \overrightarrow{v} . Give a valid reason for your answer.

Q: 4 State whether the following statement is true or false. Give a valid reason.

[1]

If the angle between \overrightarrow{p} and \overrightarrow{q} is obtuse, then $\overrightarrow{p} \cdot \overrightarrow{q} < 0$.

If \overrightarrow{p} and \overrightarrow{q} are unit vectors, show that the angle between \overrightarrow{p} and $\overrightarrow{p} + \overrightarrow{q}$ is the same as the angle between \overrightarrow{q} and $\overrightarrow{p} + \overrightarrow{q}$.

[1]

Q: 6 The adjacent sides of a parallelogram, PQRS, are represented by \vec{a} and \vec{b} .

[2]

If $\vec{a} \cdot \vec{b} = 0$, what type of parallelogram is PQRS? Give a valid reason.

Show that any two non-zero vectors \overrightarrow{u} and \overrightarrow{v} are perpendicular if $|\overrightarrow{u} - \overrightarrow{v}| = |\overrightarrow{u} + \overrightarrow{v}|$.

[5]

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	3

Q.No	What to look for	Marks
2	Writes true.	0.5
	Gives a valid reason. For example, since \overrightarrow{p} and \overrightarrow{q} are collinear, $(\lambda \overrightarrow{p} + \beta \overrightarrow{q})$ is collinear to \overrightarrow{p} . This means that $(\lambda \overrightarrow{p} + \beta \overrightarrow{q})$ is parallel to \overrightarrow{p} . Hence, their cross product is zero.	0.5
3	Writes that the projection vector will be a zero vector.	0.5
	Gives the reason that the projection of vector \overrightarrow{u} on vector \overrightarrow{v} is given by $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ \overrightarrow{v} }$ and since the dot product is 0, the projection vector is a zero vector.	0.5
4	Writes true.	0.5
	Justifies as follows:	0.5
	$\overrightarrow{p}\cdot\overrightarrow{q}=p\times q\times\cos\theta$, where $\cos\theta$ is negative when $90^{\circ}<\theta<180^{\circ}$.	
5	Writes that $\vec{p} + \vec{q}$ represents the third side of the triangle whose other two sides are \vec{p} and \vec{q} with magnitude 1 unit each(as they are unit vectors). (Award full marks if pictorial/vector explanation is provided.)	0.5
	Concludes that both \overrightarrow{p} and \overrightarrow{q} make equal angles with \overrightarrow{p} + \overrightarrow{q} as they form an isosceles triangle.	0.5
6	Writes that as $\vec{a}\cdot\vec{b}=0$, $\left \vec{a}\right imes\left \vec{b}\right imes\cos heta=0$.	0.5

Q.No	What to look for	Marks
	Reasons that $\left \vec{a}\right \neq 0$ and $\left \vec{b}\right \neq 0$ as they need to form a parallelogram.	0.5
	Deduces that $\cos \theta = 0$ and hence $\theta = 90^{\circ}$.	0.5
	Concludes that PQRS is a rectangle as the sides are intersecting at 90° .	0.5
7	Considers vectors \overrightarrow{u} and \overrightarrow{v} as:	0.5
	$\overrightarrow{U} = p\hat{i} + q\hat{j} + r\hat{k}$ $\overrightarrow{V} = x\hat{i} + y\hat{j} + z\hat{k}$	
	Uses the condition $ \overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + \overrightarrow{v} $ to write the following:	1.5
	$(p-x)^2 + (q-y)^2 + (r-z)^2 = (p+x)^2 + (q+y)^2 + (r+z)^2$	
	Simplifies the above equation to obtain $px + qy + rz = 0$.	1.5
	Uses the above step to find the dot product of the two vectors \overrightarrow{u} and \overrightarrow{v} as:	1
	$\overrightarrow{U}\cdot\overrightarrow{V}=px+qy+rz=0$	
	Writes that the vectors are perpendicular since their dot product is equal to zero.	0.5

